
Survey on Metadata Management Schemes in HDFS 
  

Abhinay Gupta , Raviraj Gundety, Vivek Fernando,  Neeraj Iyer, Beatrice.S 
 

Department of Computer Engineering 
Xavier Institute of Engineering ,Mumbai, India 

 
 

Abstract - Hadoop provides a reliable shared storage and 
analysis system.The storage is provided by Hadoop 
Distributed File System(HDFS). Hadoop is a popular open 
source implementation of mapreduce, a powerful tool designed 
for deep analysis and transformation of very large data sets. 
Managing metadata is very important in a distributed file 
system like HDFS. In this paper comparative study of three 
techniques of metadata management namely sub-tree 
partitioning, hashing and consistent hashing is presented. 
After detailed analysis we have come to the conclusion that 
consistent hashing is the best of the three techniques as it 
makes use of  multiple namenodes instead of just one 
namenode currently available in HDFS, thus improving its 
performance.  

 
Keywords— HDFS, distributed file system, metadata  

     management system. 

I. INTRODUCTION 

Hadoop was created by Doug Cutting, the creator of  
Apache Lucene. Hadoop has its origins in Apache Nutch, 
an open source web search engine which itself a part of  the 
Lucene project. The name “Hadoop” is given by the project 
creator’s kid’s stuff toy yellow elephant [1]. Building  a 
web search engine from scratch was an ambitious goal.  So 
Mike Cafarella and Doug Cutting runs a dedicate operation 
team with the support of software required for crawling and 
indexing websites goal, and introduces the search engine 
called Nutch. Nutch started in 2002, and working crawler 
search system quickly emerged. In early in 2005, the Nutch 
developers had a working MapReduce implementation in 
Nutch with the help of Google’s paper, published on Map 
reduce function  in the year 2004 and further in February 
2006 they moved out of Nutch to form an independent 
subproject of Lucene called Hadoop [1]-[2]. 
    Hadoop is a Distributed parallel fault tolerant file system. 
It is designed to reliably store very large files across 
machines in a large cluster. It is inspired by the Google File 
System. Hadoop DFS stores each file as a sequence of 
blocks; all blocks in a file except the last block are the same 
size. Blocks belonging to a file are replicated for fault 
tolerance. The block size and replication factor are 
configurable per file. Files are “write once” and have 
strictly one writer at any time. Hadoop is a top-level 
Apache project being built and used by a global community 
of contributors, written in the Java programming language 
   Hadoop is a collection of related subprojects that fall 
under the umbrella of infrastructure for distributed 
computing. These projects are hosted by the Apache 
Software Foundation, which provides support for a 
community of open source software projects. Although 

Hadoop is best known for MapReduce and its distributed 
filesystem (HDFS, renamed from NDFS), the other 
subprojects provide complementary services, or build on 
the core to add higher-level abstractions. The subprojects, 
where they sit in the briefly here:  
              

 
Fig I. Hadoop System 
 

 

 
                Table I. Hadoop project components description  
 

The fig.1  and table.1 shows the components of hadoop and 
description of the same. Hadoop is an Apache project; all 
components are available via the Apache open source 
license. Yahoo! has developed and contributed to 80% of 
the core of Hadoop (HDFS and MapReduce). HBase was 
originally developed at Powerset, now a department at 
Microsoft 
  Hadoop enables applications to work with thousands of 
nodes and petabytes of data. Hadoop was inspired by 
Google's MapReduce and Google File System (GFS). 
Hadoop is a top-level Apache project being built and used 
by a global community of contributors, written in the Java 
programming language. Yahoo! has been the largest 
contributor to the project, and uses Hadoop extensively 
across its businesses [1]-[2]. 

Abhinay Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2162-2165

www.ijcsit.com 2162



II. HDFS 

1   Introduction 

    The Hadoop Distributed File System (HDFS)[1][2] is a 
distributed file system designed to run on commodity 
hardware. It has many similarities with existing distributed 
file systems. However, the differences from other 
distributed file systems are significant. 
HDFS is highly fault-tolerant and is designed to be 
deployed on low-cost hardware. HDFS provides high 
throughput access to application data and is suitable for 
applications that have large data sets.  
   HDFS relaxes a few Portable Operating System Interface 
(POSIX) requirements to enable streaming access to file 
system data. HDFS was originally built as infrastructure for 
the Apache Nutch web search engine project. 
 
2   Key Features of HDFS 
• Scale-Out Architecture - Add servers to increase 

capacity. 
• High Availability - Serve mission-critical workflows 

and applications. 
• Fault Tolerance - Automatically and seamlessly 

recover from failures. 
• Flexible Access - Multiple and open frameworks for 

serialization and file system mounts. 
• Load Balancing - Place data intelligently for maximum 

efficiency and utilization. 
• Tunable Replication - Multiple copies of each file 

provide data protection and computational performance. 
• Security - POSIX-based file permissions for users and 

groups with optional LDAP integration. 
 
3  Assumptions and Goals 
 3.1.  Hardware Failure 
   Hardware failure is the norm rather than the exception. 
An HDFS instance may consist of hundreds or thousands of 
server machines, each storing part of the file system’s data. 
The fact that there are a huge number of components and 
that each component has a non-trivial probability of failure 
means that some component of HDFS is always non-
functional. Therefore, detection of faults and quick, 
automatic recovery from them is a core architectural goal of 
HDFS. 
  3.2.  Streaming Data Access 
    Applications that run on HDFS need streaming access to 
their data sets. They are not general purpose applications 
that typically run on general purpose file systems. HDFS is 
designed more for batch processing rather than interactive 
use by users. The emphasis is on high throughput of data 
access rather than low latency of data access. POSIX 
imposes many hard requirements that are not needed for 
applications that are targeted for HDFS. POSIX semantics 
in a few key areas has been traded to increase data 
throughput rates. 
3.3.  Large Data Sets 
  Applications that run on HDFS have large data sets. A 
typical file in HDFS is gigabytes to terabytes in size. Thus, 
HDFS is tuned to support large files. It should provide high 
aggregate data bandwidth and scale to hundreds of nodes in 

a single cluster. It should support tens of millions of files in 
a single instance. 
   HDFS applications need a write-once-read-many access 
model for files. A file once created, written, and closed 
need not be changed. This assumption simplifies data 
coherency issues and enables high throughput data access. 
A Map/Reduce application or a web crawler application fits 
perfectly with this model. There is a plan to support 
appending-writes to files in the future. 
 3.4.  Computation  
   A computation requested by an application is much more 
efficient if it is executed near the data it operates on. This is 
especially true when the size of the data set is huge. This 
minimizes network congestion and increases the overall 
throughput of the system. The assumption is that it is often 
better to migrate the computation closer to where the data is 
located rather than moving the data to where the application 
is running. HDFS provides interfaces for applications to 
move themselves closer to where the data is located. 
3.5. Portability across Heterogeneous Hardware and 
Software Platforms 
     HDFS has been designed to be easily portable from one 
platform to another. This facilitates widespread adoption of 
HDFS as a platform of choice for a large set of applications. 
 
4     Architecture 

       The Hadoop Distributed File System (HDFS)[2] is a 
distributed file system designed to run on commodity 
hardware. It has many similarities with existing distributed 
file systems. However, the differences from other 
distributed file systems are significant. HDFS is highly 
fault-tolerant and is designed to be deployed on low-cost 
hardware. HDFS provides high throughput access to 
application data and is suitable for applications that have 
large data sets. HDFS was originally built as infrastructure 
for the Apache Nutch web search engine project.  
      HDFS stores file system metadata and application data 
separately. HDFS architecture consists of NameNode, 
DataNode, and HDFS Client. A HDFS Cluster may consist 
of thousands of DataNode and tens of thousands of HDFS 
clients per cluster, as each DataNode may execute multiple 
application tasks concurrently. The main features of HDFS 
are that, it is highly fault tolerance, suitable for applications 
with large data sets. The below figure.2 shows the Hadoop 
Distributed File System Architecture: 
 

 
                              Fig.II. HDFS architecture 

Abhinay Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2162-2165

www.ijcsit.com 2163



   HDFS [2] is master/slave architecture and consist of 
single NameNode, a master server that manages the file 
system namespace and regulates access to files by clients. 
HDFS namespace is a hierarchy of files and directories. 
These files and directories which records attribute like 
permissions, modification, access time namespace and disk 
space quotas.  
A file is split into one or more blocks and set of blocks are 
stored in DataNodes. [2] A DataNodes stores data in the 
files in its local system and it does have any knowledge 
about HDFS file system. It stores each block of HDFS data 
in a separate file. 
5   Limitations 
    HDFS[7] cluster has a single name node that manages 
the file system namespace. The current limitation that a 
cluster can contain only a single name node results in the 
following issues:  
1. Scalability: Name node maintains the entire file system 

metadata in memory. The size of the metadata is 
limited by the physical memory available on the node. 
This results in the following issues:  
a. Scaling storage – while storage can be scaled by 
adding more data nodes/disks to the data nodes, since 
more storage results in more metadata, the total storage 
file system can handle is limited by the metadata size.  
b. Scaling the namespace – the number of files and 
directories that can be created is limited by the memory 
on name node. To address these issues one encourages 
larger block sizes, creating a smaller number of larger 
files and using tools like the hadoop archive (har).  

2. Isolation: No isolation for a multi‐tenant environment. 
An experimental client application that puts high load 
on the central name node can impact a production 
application.  

3. Availability: While the design does not prevent building 
a failover mechanism, when a failure occurs the entire 
namespace and hence the entire cluster is down. 

 A single NameNode manages file system namespace, 
determines the mapping of file to blocks, and regulates 
access to files. In HDFS, all metadata is kept in the memory 
of the single NameNode, so it may become performance 
bottleneck as metadata number increases. 

 
III METADATA MANAGEMENT SCHEMES 

    In Distributed Metadata Management the meta data is 
distributed  among  the various data nodes or servers.There 
are several techniques to manage distributed meta data such 
as Sub-Tree partitioning, Hashing and consistent hashing .  
1   Sub Tree Partitioning    
  The Sub Tree Partitioning [3][4] is used in Ceph file 
system and Coda file system. The key design idea is that 
initially, the partition is performed by hashing directories 
near the root of the hierarchy, and when a server becomes 
heavily loaded, this busy server automatically migrates 
some subdirectories to other servers with fewer loads. It 
also proposes prefix caching to efficiently utilize available 
RAM on all servers to further improve the performance. 
This approach has three major disadvantages.  

   First, it assumes that there is an accurate load 
measurement scheme available on each server and all 
servers periodically exchange the load information.  
   Second, when an MS joins or leaves due to failure or 
recovery, all directories need to be rehashed to reflect the 
change in the server infrastructure, which, in fact, generates 
a prohibitively high overhead in a petabyte-scale storage 
system.  
  Third, when the hot spots of metadata operations shift as 
the system evolves; frequent metadata migration in order to 
remove these hot spots may impose a large overhead and 
offset the benefits of load balancing. Some Common  

 
Fig III. Subtree partitioning 

 

    In sub tree partitioning, namespace is divided into many 
directory sub trees, each of which is managed by individual 
metadata servers. This strategy provides a good locality 
because metadata in the same sub tree is assigned to the 
same metadata server, but metadata may not be evenly 
distributed, and the computing and transferring of metadata 
may generate a high time and network overhead.  
 

 
                             Fig IV. Hashing Diagram 

2  Hashing Technique  

  Hashing technique [6] is used in Lustre, zFs file system. 
Hashing technique uses a hash function on the path name to 
get metadata location. In this scheme, metadata can be 
distributed uniformly among cluster, but the directory 
locality feature is lost, and if the path is renamed, some 
metadata have to migrate. However, a serious problem 
arises when an upper directory is renamed or the total 
number of MSs Changes the hashing mapping needs to be 
re-implemented, and this requires all affected metadata to 
be migrated among MSs. Although the size of the metadata 
of a file is small, a large number of files may be involved. 
In particular, the metadata of all files has to be relocated if 
an MS joins or leaves. This could lead to both disk and 
network traffic surges and cause serious performance 
degradation. The hashing-based mapping approach can 

Abhinay Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2162-2165

www.ijcsit.com 2164



balance metadata workloads and inherently has fast 
metadata lookup operations, but it has slow directory 
operations such as listing the directory contents and 
renaming directories; in addition, when the total number of 
MSs Changes, rehashing all existing files generates a 
prohibitive migration overhead.  
 

3 Consistent Hashing  

   Consistent hashing [5] is proposed hash method used in 
Amazon Dynamo. In basic consistent hashing, the output 
range of the hash function is treated as a ring. Not only the 
data is hashed, but also each node is hashed to a value in the 
ring. Each node is responsible for the data in the range 
between it and its predecessor node. In consistent hashing, 
the addition and removal of a node only affects its neighbor 
nodes. An optimization of consistent hashing is the 
introduction of "virtual node". Instead of mapping a 
physical node to a single point in the ring, each physical 
node is assigned to multiple positions, each of which is 
called a virtual node. With virtual node, data and workload 
is distributed over nodes more uniformly.  

    A single NameNode manages file system namespace, 
determines the mapping of file to blocks, and regulates 
access to files. In HDFS, all metadata is kept in the memory 
of the single NameNode, so it may become performance 
bottleneck as metadata number increases. So in HDFS, we 
changed the single NameNode architecture to multiple 
NameNodes, and the author has proposed a metadata 
management scheme. 

 
                          Fig V. Consistent Hashing  

IV COMPARISON OF TECHNIQUES 

 
Consistent 

Hashing 
Sub-Tree 

partitioning 
Performance High Low Medium 
Load Balancing Yes Yes No 
Reliability High Low Low 

Scalability 
Highly 

Scalable 
Moderately 

Scalable 
Moderately 

Scalable 

          Table II. Comparison of meta data management schemes 

From the table II, it can be noticed that consistent Hashing 
technique has higher performance as compared to other two 
techniques; as the distribution of metadata and routing of 
metadata request is effectively done. In this technique the 
data bucket is divided into equal size which is further 
evenly distributed over the NameNodes which leads to 
efficient load balancing because of even distribution. 

Storing and prefetching of metadata is done by log method. 
The logs are stored into bucket look up table which is 
NameNodes’memory  to log replication fault-tolerance is 
increased which in turn  stored at client cache and which 
leads to proper load balancing which increases scalability. 
  Consistent hashing consists of the insertion of  metadata or  
removal of the same without disturbing the cluster and it 
also redistributes the load which leads to proper load 
balancing which in turn increases scalability.  
   Hashing technique gives low performance since hashing 
destroys the locality of metadata which causes the 
opportunity to prefetching and storing the metadata in 
bucket. The hashing-based mapping approach can balance 
metadata workloads and inherently has fast metadata 
lookup operations, but it has slow directory operations such 
as listing the directory contents and renaming directories. In 
addition, when the total number of MSs change, rehashing 
all existing files generates a prohibitive migration overhead.  
In hashing the hash function uses the search-key of the 
bucket. This search key is unique. Due to the uniqueness of 
search key in hashing, dependency is generated which leads 
to low reliability.  

In Sub-Tree partitioning the performance is medium 
compare to hashing technique. As sub-tree partitioning uses 
N-nary data structure in which the dependency is formed 
over root node and on parent node. Thus reliability 
decreases. We can say that comparing above techniques, 
consistent hashing is better technique. 

V. CONCLUSION 

 It has been  discussed the hadoop system and its 
architecture in brief. We have explained hadoop distributed 
file system including its features, goals and limitations in 
detail. HDFS is highly fault tolerant. The drawback of 
HDFS having only a single namenode is overcome by 
making use of multiple namenodes in the system. 
Distributing metadata evenly among multiple metadata 
servers is another issue for which we have done comparative 
study of three schemes used for metadata management 
namely sub-tree partitioning, hashing and consistent hashing 
techniques. Consistent hashing is better than other two 
techniques as it distributes the load relatively evenly to the 
server and consumes comparatively less memory 

REFERENCES 
[1]   http://en.wikipedia.org/wiki/Apache_Hadoop  
[2]   Mrudula Varade*, Vimla Jethani** “Distributed Metadata 

Management Schemes in HDFS”, IEEE AMY 2013,  
www.ijsrp.org/research-paper-0513/ijsrp-p1770.pd 

[3]    M. Satyanarayanan, J. 1. Kistler, P. Kumar, et ai, "Coda: A highly 
available file system for a distributed workstation environment", 
IEEE Transactions on Computers, 1990, 39(4):447-459. 

[4]  S. A. Weil, S. A. Brandt, E. L. Mille, et ai, "Ceph: A Scalable, High-
Performance Distributed File System", In Proceedings of the 7th 
symposium on Operating systems design and implementation, 2006, 
pp. 307-320 

[5]   Bing Li, Yutao He, Ke Xu, “Distributed Metadata Management 
Scheme in Cloud Computing “, In Proceedings of IEEE in 
PCN&CAD CENTER, Beijing University of Post and 
Telecommunication, China, 2011.  

[6]  Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, Ethan L.Miller 
,”Dynamic Metadata Management for Petabyte-scale File Systems “, 
In Proceedings of IEEE University of California, 2004.  

[7]   http://hortonworks.com/blog/thinking-about-the-hdfs-vs-other-
storage-stechnologies/. 

 

Abhinay Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2162-2165

www.ijcsit.com 2165




